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Topic modeling is a powerful tool for discovering the underlying or hidden structure in text corpora.

Typical algorithms for topic modeling include probabilistic latent semantic analysis (PLSA) and latent

Dirichlet allocation (LDA). Despite their different inspirations, both approaches are instances of

generative model, whereas the discriminative structure of the documents is ignored. In this paper,

we propose locally discriminative topic model (LDTM), a novel topic modeling approach which considers

both generative and discriminative structures of the data space. Different from PLSA and LDA in which

the topic distribution of a document is dependent on all the other documents, LDTM takes a local

perspective that the topic distribution of each document is strongly dependent on its neighbors. By

modeling the local relationships of documents within each neighborhood via a local linear model, we

learn topic distributions that vary smoothly along the geodesics of the data manifold, and can better

capture the discriminative structure in the data. The experimental results on text clustering and web

page categorization demonstrate the effectiveness of our proposed approach.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing growth of digital data on the web, the
automatic tools for exploratory data analysis are in great demand
in various fields, including data mining, machine learning, pattern
recognition and information retrieval. As one of the representa-
tive exploratory data analysis tools, probabilistic topic modeling
[1] has received considerable attentions in recent years [2–9].
Topic modeling approaches can provide concise topical descrip-
tions of document corpora that are semantically interpretable by
human [10]. At the same time, they can also preserve the under-
lying statistical relationships that are helpful for document
indexing, organization and common discriminative tasks such as
clustering and classification [11].

Two of the most popular topic modeling algorithms are probabil-
istic latent semantic analysis (PLSA) [12] and latent Dirichlet alloca-
tion (LDA) [11]. Both methods are generative models that model
each document as a mixture over a fixed set of underlying topics,
where each topic is characterized as a distribution over words.
Specifically, each word w in d is assumed to be generated from a
distribution over words specific to a latent topic z, where z is
sampled from a distribution corresponding to d with a probability
PðzjdÞ. The topic probabilities can be indirectly inferred by maximiz-
ing the log-likelihood of the data to be generated. One limitation of
these two approaches is that they fail to consider the intrinsic
geometrical structure of the data space [13].
In contrast to generative approaches, discriminative approaches
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It is worthwhile to notice that LDTM in spirit is closely related
to locally consistent topic modeling (LTM) [22,13]. In particular,
LTM puts the smoothness constraint on the topic distributions
using the Laplacian or manifold regularizer [23] to emphasize the
pairwise similarities. It defines a cost function in the form
of the summation of DðPðzjdiÞjjPðzjdjÞÞWij over all document pairs,
where Dð�J�Þ denotes the distance between two topic distributions
according to some distance metric such as KL-divergence,
and Wij is the edge weight of di and dj in the nearest neighbor
graph. The performance of LTM, therefore, largely relies on the
weight assignment. Different from LTM, LDTM has its distinct
features:
1.
 LDTM learns the graph Laplacian automatically using a local
learning approach to model the topic relation between a
document and its neighbors. This attains the robustness of
model by avoiding the explicit assignment of the edge weights
in the graph, to which the model (e.g., LTM) is very sensitive.
2.
 LDTM provides a complementary discriminative learning
scheme to infer the topic distributions via a learning machine,
i.e., regressions, in hope of boosting the generative scheme for
topic modeling. This is beyond the focus of LTM. Moreover,
LDTM is flexible to incorporate any other generative
scheme (e.g., LDA) or discriminative learning scheme (e.g.,
SVM) as an alternative.
2. Background

Two of the most popular probabilistic topic modeling
approaches are probabilistic latent semantic analysis (PLSA) [12]
and latent Dirichlet allocation (LDA) [11]. Both of these two
models assume documents are generated by the activation of a
fixed set of latent topics, where each topic are modeled as a
distribution over words.

Specifically, PLSA, which is also known as aspect model, is indeed
a latent variable model for general co-occurrence data which
associates with an unobserved topical class variable zAZ ¼
fz1, . . . ,zKg with each observation, i.e., with each occurrence of a
word wAW ¼ fw1, . . . ,wMg in a document dAD¼ fd1, . . . ,dNg. As a
generative model, PLSA simulates the data generation process by
defining a joint probability model:

Pðd,wÞ ¼ PðdÞPðwjdÞ,

PðwjdÞ ¼
X

zAZ
PðwjzÞPðzjdÞ: ð1Þ

The parameters are estimated by maximizing the log-likelihood of
the whole collection to be generated:

L¼
X

dAD

X

wAW
nðd,wÞlogPðd,wÞp

X

dAD

X

wAW
nðd,wÞlog

X

zAZ
PðwjzÞPðzjdÞ,

ð2Þ

where n(d,w) denotes the number of times w occurred in d. The
standard EM algorithm [24] is applied to estimate the parameters
fPðwjzÞ,PðzjdÞgw,z,d.

Note that PLSA estimates the topic distributions PðzjdÞ inde-
pendently for different d, therefore the number of parameters,
which is KMþKN, grows linearly with the number of training
documents N. This indicates that PLSA is susceptible to overfitting
[11]. To overcome this problem, latent Dirichlet allocation (LDA)
[11] treats the topic distribution as a K-dimensional Dirichlet
random variable. Thus the KMþK parameters in a K-topic LDA
model do not grow with the size of the training corpus and LDA
does not suffer from the same overfitting issue as PLSA.
3. Locally discriminative topic modeling

Recent studies [25,26] have shown that naturally occurring
data, such as texts and images, cannot possibly ‘‘fill up’’ the
ambient Euclidean space, rather it must concentrate around
lower-dimensional manifold structures which plays an essential
role in developing various kinds of algorithms including dimen-
sionality reduction, supervised learning and semi-supervised
learning algorithms [27,23,28,29]. To model this manifold struc-
ture, recent work on topic modeling [22,13] proposed to incorpo-
rate the so-called manifold regularizer [23] in the maximum
likelihood estimation.

The manifold regularizer emphasizes the pairwise similarities
of the data and defines the cost function based on the weight
matrix of a nearest neighbor graph. However, these approaches
are very sensitive to the weighting scheme. In this section, we will
introduce how to learn a locally discriminative regularizer auto-
matically with local learning approaches for topic modeling.

3.1. Locally discriminative regularizer

The goal of PLSA is to estimate the parameters fPðwjzÞ,PðzjdÞgw,z,d.
The topic distribution PðzjdÞ gives an explicit representation of a
document in aspects. A discriminative interpretation of PðzjdÞ would
be the probabilities with which a specific document d is clustered into
each topical class z. Hence, the inference of the class posteriors PðzjdÞ



H. Wu et al. / Pattern Recognition 45 (2012) 617–625 619
documents into a set of local neighborhoods, and appropriately
models a mapping function to approximate the topic distributions
within each neighborhood.

Given a document di, let N ðdiÞ denote the set of its neighbors
including itself, with the size ni ¼ jN ðdiÞj. In this paper, we assume
n1 ¼ n2 ¼ � � � ¼ nN ¼ k for simplicity. To construct the neighbor-
hood for each di, we find the k-nearest neighbors according to
cosine similarity which is defined as

cosðxi,xi0 Þ ¼
xT

i xi0

JxiJJxi0J
ð7Þ

for two arbitrary document vectors xi and xi0 .
Let I i denote the set containing the indices of all the docu-

ments in the neighborhood N ðdiÞ, that is I i ¼ fjjdjAN ðdiÞg. Let
Xi ¼ ½xj�ARM�ni for jAI i be the local data matrix of N ðdiÞ. Let
Yi ¼ ½yj�ARK�ni for jAI i be the local representation matrix of
N ðdiÞ in the latent topic space.

Following the idea of local learning [18], we try to fit a local
model fiðXiÞ ¼ AT

i Xiþbi1
T
ni

for each N ðdiÞ to best approximate Yi.
Note that the subscript i for fi means that it is trained within the
neighborhood N ðdiÞ. In this model, AiARM�K is the transforma-
tion matrix specific to N ðdiÞ, 1ni

is the ni-dimensional vector of all
ones and biARK is the intercept. For simplicity, we append a new
element ‘‘1’’ to each x. Thus, the intercept bi can be absorbed into
Ai and we have fiðXiÞ ¼AT

i Xi. Fitting this model can be mathema-
tically formulated as

min
Ai ,Yi

1

ni
JYi�AT

i XiJ
2
FþmJAiJ

2
F , ð8Þ

where J � JF is the Frobenius norm for matrices, and the penalty
term mJAiJ

2
F with m40 is introduced to avoid overfitting [30]. This

linear model finds a mapping from the word space Xi to the topic
space Yi locally.

Taking the first-order partial derivative of Eq. (8) with respec-
tive to Ai and requiring it to be zero, we get the optimal solution
for Ai:

An

i ¼ ðXiX
T
i þnimIÞ�1XiY

T
i , ð9Þ

where I is an identity matrix. Substituting Ai in Eq. (8) with Eq.
(9), we get the following minimization problem:

min
Yi

1

ni
JYiðI�XT

i ðXiX
T
i þnimIÞ�1XiÞJ

2
F

þmJðXiX
T
i þnimIÞ�1XiY

T
i J

2
F : ð10Þ

Following some simple algebraic steps, Eq. (10) can be reduced to

min
Yi

TrðYiDiY
T
i Þ, ð11Þ

where Trð�Þ denotes the trace operator and Di is given by

Di ¼
1

ni
ðI�XT

i ðXiX
T
i þnimIÞ�1XiÞ: ð12Þ

By applying the Woodbury–Morrison formula [31], the above
equation can be simplified as

Di ¼ mðXT
i XiþnimIÞ�1: ð13Þ

For each N ðdiÞ, we can find the best local model by optimizing
Eq. (11). By summing the costs of all local models, we get

min
Y1 ,...,YN

XN

i ¼ 1

TrðYiDiY
T
i Þ: ð14Þ

It is clear Yi is a sub-matrix of Y, we can construct a selection
matrix Si such that Yi ¼ YSi. Si is constructed as follows:
Si ¼ ½ej�ARN�ni for jAI i, where ej is the j-th unit vector whose
j-th element is one and all other elements are zero. Substituting Yi
in Eq. (14) with YSi, we have

min
Y

TrðYDYT
Þ, ð15Þ

where D is computed as

D¼
XN

i ¼ 1

ðSiDiS
T
i Þ: ð16Þ

By taking into account the local geometric structure, the optimal
Y, which are the topic distributions fPðzjdÞgz,d, should minimize

R¼ TrðYDYT
Þ: ð17Þ

We call TrðYDYT
Þ the locally discriminative regularizer. By incorporat-

ing this regularizer into traditional topic modeling approaches, we
can obtain probabilistic topic distributions which are concentrated
around the data manifold.

3.2. Locally discriminative topic modeling

Incorporating the locally discriminative regularizer into the
generative scheme of PLSA, we obtain our locally discriminative
topic modeling (LDTM) approach. Following [13], we define the log-
likelihood of LDTM as a linear combination of Eqs. (2) and (17):

max
Y

L�lR, ð18Þ

where l40 is the regularization parameter and Y¼ fPðwjzÞ,
PðzjdÞgw,z,d is the set of parameters to be estimated.

In Eq. (18), L represents how likely the collection of docu-
ments are generated via the generative scheme. By maximizing L,
we seek a set of parameters fPðwjzÞgw,z and fPðzjdÞgz,d which fit the
data best. R measures the smoothness of the topic distributions
on the local manifold structure of data. By maximizing �lR, we
find fPðzjdÞgz,d that best fits the local geometrical structure of
document space.

The standard procedure for maximum likelihood estimation in
latent variable models is the expectation maximization (EM)
algorithm [24]. The EM algorithm starts with some initial guess
of the parameters, Y0, then generate successive estimates, Yt for
t¼1,2,yuntil convergence by repeatedly alternating the follow-
ing two steps: (i) an expectation (E) step where posterior
probabilities are computed for the latent variables, based on the
current estimates of the parameters, (ii) a maximization (M) step,
where parameters are updated based on maximizing the so-called
expected complete data log-likelihood which depends on the
posterior probabilities computed in the E-step. In the following,
we describe the two steps in our algorithm for parameter
estimation at each t-th iteration for t¼1,2,y.

E-step: Compute the posterior probabilities for the latent
variables:

Pðzjd,wÞt ¼
PðwjzÞt�1PðzjdÞt�1P

z0AZPðwjz0Þt�1Pðz0jdÞt�1
: ð19Þ

M-step: Maximize the expected complete data log-likelihood:

HðYÞ ¼QðYÞ�lR
¼
X

dAD

X

wAW
nðd,wÞ

X

zAZ
Pðzjd,wÞlog½PðwjzÞPðzjdÞ��lR: ð20Þ

Since the regularizer R does not involves PðwjzÞ, we have the
closed form re-estimation equation for PðwjzÞ, which is the same
as that of PLSA [32]:

PðwjzÞt ¼

P
dADnðd,wÞPðzjd,wÞtP

w0AW
P

dADnðd,w0ÞPðzjd,w0Þt
: ð21Þ

For PðzjdÞ, we cannot obtain a closed form re-estimation equation
since finding the global optimum of Eq. (20) is hard [22].
Therefore, instead of applying the traditional EM, we use the
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generalized EM (GEM) algorithm [33]. In each M-step, GEM only
finds a ‘‘better’’ Y that increases HðYÞ. To achieve this, in t-th
iteration, we first apply Eq. (21) and the following equation:

PðzjdÞt ¼

P
wAWnðd,wÞPðzjd,wÞt

nðdÞ
, ð22Þ

which is also the same as in PLSA, in order to obtain Y0
t which

maximizes QðYÞ. Obviously, it is not guaranteed that
HðY0

t ÞZHðYt�1Þ. Then we apply the Newton–Raphson method
[34] to decrease R iteratively from HðY0

t Þ to successive HðYm
t Þ, for

m¼1, 2,y, in hope of finding Ym
t which satisfies HðYm

t ÞZHðYt�1Þ.
Given a function f(x), we adopt the updating formula of Newton–
Raphson in the general form:

xm ¼ xm�1�g f 0ðxÞ

f 00ðxÞ
, ð23Þ

where xm is the new estimate of parameters based on the previous
estimate xm�1. It is easy to verify RZ0, thus R will decrease at each
updating step of the Newton–Raphson method. By taking the first
and second derivatives of R with respect to PðzjdiÞ, we obtain the
specific Newton–Raphson updating equation as follows:

PðzjdiÞ
m
t ¼ PðzjdiÞ

m�1
t �g

PN
j ¼ 1 dijPðzjdjÞ

m�1
t

dii
, ð24Þ

where dij is the (i,j)-th element ofD, and 0ogo1 is the step size. It is
clear that

P
zAZPðzjdÞmt ¼ 1 always holds, and a relative small value

of g ensures PðzjdÞZ0. Once we obtain a Ym
t which satisfies

HðYm
t ÞZHðYt�1Þ, we stop iterating Eq. (24). This completes the

M-step.
The E-step and M-step are alternated repeatedly until conver-

gence is reached. We summarized the procedure of our LDTM in
Algorithm 1.

Algorithm 1. Generalized EM for LDTM
Input:

� fPðwjdÞg for all w and d
� the parameters K, k, l, g, and convergence condition
threshold e
Output:

� Y¼ fPðwjzÞ,PðzjdÞg for all w,z and d
Procedure:

1:
 compute the matrix D by Eq. (16)

2:
 initializeY0: PðwjzÞ0 ¼ 1=M, PðzjdÞ0 ¼ 1=K for all w, z and d
3:
 t’0

4:
 repeat

5:
 t’tþ1

6:
 E-step: compute Pðzjw,dÞ by Eq. (19) for all w, z and d
7:
 M-step:

8:
 compute PðwjzÞt by Eq. (21) for all w and z
9:
 compute PðzjdÞt by Eq. (22) for all z and d
10:
 PðzjdÞ0t ’PðzjdÞt for all z and d
11:
 m’0

12:
 repeat

13:
 m’mþ1

14:
 compute PðzjdÞmt by Eq. (24) for all z and d
15:
 until HðYm
t Þ4HðYtÞ
16:
 until ½HðYtÞ�HðYt�1Þ�re

17:
 return Yt
3.3. Computational complexity

In this subsection, we provide a computational cost analysis of
LDTM in comparison to PLSA. We present operation counts
measured by flam [35], which is a compound operation consisting
of one addition and one multiplication. The document vector x is
usually sparse, and we use S to denote the sparseness of x, i.e., the
average number of non-zero features per document. The major
computational cost in LDTM include two parts:
1.
 Computation of the matrix D given by Eq. (16). This part first
requires k-nearest neighbors construction for all the N docu-
ments, which costs about OðSN2

þkN2
Þ flam. OðSN2

Þ is used to
calculate the pairwise cosine similarity given by Eq. (7) and
OðkN2

Þ is used to sort the pairwise similarity for finding
k-nearest neighbors for all documents. Secondly, given ni¼k,
around Oðk2Sþk3Þ flam is required to compute each Di given
by Eq. (12) which mainly involves one matrix–matrix product
using O(k2S) flam and one matrix inversion using O(k3) flam.
Since every k� k matrix Di contributes each element only once
to form the matrix D given by Eq. (16), there is at most k2N

non-zero elements in D. Hence, to obtain the final D as in Eq.
(16), the matrix–matrix products need trivial O(k2) flam since
Si has only k non-zero elements and the summation need
O(k2N) flam. Therefore, this part in total requires around
OðSN2

þkN2
þk2SNþk3NÞ flam. We also need k2N memory to

store the sparse matrix D.

2.
 Parameter estimation using generalized EM algorithm. In each

iteration, KSN posterior probabilities Pðzjd,wÞ have to be
computed in the E-step as in Eq. (19) since there are SN

distinct observation pairs (d,w), each of which has K posterior
probabilities. We can easily verify that the E-step requires
O(KSN) flam for all Pðzjd,wÞ. In M-step, each Pðzjd,wÞ contri-
butes to exactly one re-estimation both in Eqs. (21) and (22).
Therefore, these two equations cost O(KSN) flam. The work
load of each Newton–Raphson updating is around O(k2KN)
flam since each row of D has approximately k2 non-zero
elements. If each M-step repeats an average of m iterations
at Newton–Raphson updating, then the cost is O(mk2KN) flam.
Assuming that LDTM converges after t iterations of the EM,
this part costs OðtKSNþtmk2KNÞ in total. We also have to use
SNþSKNþMKþKN memory to store PðwjdÞ, Pðzjd,wÞ, PðwjzÞ

and PðzjdÞ.

In conclusion, LDTM costs O½ðSþkÞN2þðk2Sþk3þtKSþ

tmk2KÞN� in total to find the optimum of the parameters. Since
k is usually set as a small value such as 5 or 10 (see our
experiments in Section 4), it is clear k5S and k3

5tmk2K in usual
cases. We thus can rewrite the computational cost of LDTM as
O½SN2

þðk2SþtKSþtmk2KÞN�. We also require about ðk2þSþ

SKþKÞNþMK memory to store all non-zero elements of the
matrix D and all parameters. For PLSA, it requires OðtKSNÞ flam
if the EM algorithm converges after t iterations and need
(SþSKþK)NþMK memory to store all the parameters. Table 1
summarizes our complexity analysis of LDTM, together with
PLSA.
4. Experiments

In this section, we first present the task of document modeling
to evaluate how well our LDTM algorithm gives topical repre-
sentations of documents. We then investigate discriminative
tasks, i.e., text clustering and web page classification to evaluate
how much discriminative power LDTM can provide, in order to
compare with PLSA [12], LDA [11] and LTM [13] in an objective
and quantitative way.

Throughout the experiments, we fix m¼ 1, g¼ 0:1, and empiri-
cally set the number of nearest neighbors k¼5 and the value of
the regularization parameter l¼ 1000.
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Table 3
Clustering accuracy (mean7std-dev%) on 20 Newsgroups.

p Word PLSA LDA LTM LDTM NCut NMF

2 80.5714.2 79.1712.7 94.075.1 95.972.5 96.772.8 95.372.0 94.772.7

3 63.6712.6 73.5714.0 87.979.6 90.478.9 91.479.2 87.9712.9 85.8711.0

4 53.977.3 69.2711.7 85.577.8 88.576.4 90.675.7 87.676.6 83.177.4

5 51.375.6 69.379.1 81.978.2 85.678.7 88.477.4 86.076.8 84.378.4

6 45.975.8 67.878.9 80.278.3 81.477.3 86.776.9 82.478.1 80.677.9

7 43.674.0 68.675.5 77.477.7 79.578.4 83.077.3 80.778.2 78.877.7

8 42.372.6 64.576.2 73.078.3 77.379.4 80.677.3 75.076.3 76.376.4

9 41.974.1 66.978.4 73.175.0 73.374.4 79.475.1 71.976.3 73.076.7

10 37.573.9 65.177.1 67.978.0 70.378.3 74.677.8 68.378.2 68.277.2

Avg. 51.1 69.3 80.1 82.4 85.7 81.7 80.5

Table 4
Clustering accuracy (mean7std-dev%) on Yahoo! News K-series.

p Word PLSA LDA LTM LDTM NCut NMF

2 68.7714.4 58.074.8 68.8714.3 81.5715.7 84.1716.0 78.5711.8 71.0716.0

3 57.7715.0 50.5710.2 59.3713.0 69.0714.5 73.8714.1 67.1711.9 67.2714.1

4 55.2711.6 42.677.7 64.5713.6 67.4714.3 73.9712.6 56.5712.6 69.6716.1

5 55.9710.0 36.175.5 63.0712.4 59.4711.8 66.0715.6 55.878.5 63.8712.8

6 50.576.9 33.876.0 51.779.5 62.6713.2 65.7712.5 54.679.0 54.8710.5

7 49.078.2 30.374.2 52.377.6 59.2714.5 61.4714.0 49.577.6 53.279.1

8 48.275.9 28.373.1 51.978.7 57.9712.0 62.8711.2 49.076.8 54.976.4

9 43.674.7 27.573.2 47.874.9 56.9710.9 59.9711.0 49.074.6 49.675.4

10 43.674.8 25.873.3 49.376.6 53.279.0 56.5710.4 48.076.3 50.276.0

Avg. 52.5 37.0 56.5 63.0 67.1 56.4 59.4
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Fig. 2. The performance of LDTM vs. l and k on 20 Newsgroups.
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We also study the influence of different choices for the
regularization parameter l and the neighborhood size k in LDTM.
Fig. 2 shows the curves for 20 Newsgroups, where accuracy values
are averaged over all given numbers of sampled clusters. It is
illustrated that LDTM achieves good performance as l varies from
500 to 10,000. The performance is stable with respect to k when k

is relative small (such as between 5 and 15), and the performance
drops as k continues to increase. This confirms the assumption
that the local learning method with a small neighborhood size
rather than the global learning (where k¼ þ1), is capable to
capture the geometric structure of the data in each distinct
cluster.

4.3. Web categorization on WebKB

A challenging aspect of the document classification problem is
the choice of features. Treating individual words as features yields
a rich but very large feature set. One way to reduce this feature
set is to use topic modeling approaches for dimensionality
reduction. For example, PLSA reduces the document to a fixed
set of real-valued features PðzjdÞ. It is of interest to see how much
discriminating information we may lose in reducing the docu-
ment description to these parameters [11].

In this experiment, we investigate the web page categorization
task on the WebKB dataset.4 We address a subset consisting of
pages from the four universities: Cornell, Texas, Washington and
Wisconsin. After removing empty web pages, html tags and words
that occur fewer than five documents, we obtain 4128 documents
with 9933 instinct words in total. These pages were manually
classified into the following categories: student, faculty, staff,

http://www-2.cs.cmu.edu/~webkb/
http://www-2.cs.cmu.edu/~webkb/
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department, course, project and other. The statistics are listed in
Table 5.

We address two tasks: (i) predicting which university pages
belongs to; (ii) predicting the category label of the pages. For task
(ii), we only address a subset consisting of the four populous
Table 5
The statistics of the subset of WebKB.

School Student Faculty Staff Dept. Course Project Other Total

Cornell 128 34 21 1 44 20 612 860

Texas 147 46 3 1 38 20 566 821

Washington 126 31 10 1 77 21 931 1197

Wisconsin 155 42 12 1 85 25 930 1250

Total 556 153 46 4 244 86 3039 4128

Table 6
Classification error rate (mean7std-dev%) on WebKB for task (i).

# Train Word PLSA LDA LTM LDTM

5 66.975.6 59.173.9 57.875.1 54.076.3 53.977.8

10 57.075.2 52.072.5 48.473.0 42.173.2 39.574.5

15 53.474.3 49.572.5 46.172.2 40.572.9 37.073.5

20 49.874.3 47.172.1 43.472.2 37.072.0 33.872.0

25 47.274.2 45.472.1 41.972.1 35.372.3 31.672.2

30 45.574.7 44.071.8 40.472.0 33.772.3 30.172.6

35 43.372.5 42.772.0 39.171.9 32.471.7 28.972.0

40 43.273.3 41.772.1 38.571.9 31.571.8 28.471.7

45 41.673.0 40.671.5 37.271.6 30.771.3 27.571.4

50 41.073.1 40.071.6 36.371.1 29.171.5 26.171.3

Avg. 48.0 46.2 42.9 36.6 33.7

Table 7
Classification error rate (mean7std-dev%) on WebKB for task (ii).

# Train Word PLSA LDA LTM LDTM

4 52.1711.6 41.279.5 36.978.5 36.178.3 32.977.2

8 40.478.2 33.874.9 30.873.7 28.774.5 28.574.3

12 36.375.6 31.872.9 28.573.2 27.672.5 25.772.7

16 33.675.5 31.573.3 28.373.2 27.372.5 24.872.1

20 31.174.2 30.473.3 27.672.5 26.472.2 24.472.6

24 29.974.1 28.872.7 26.971.7 26.372.4 23.872.0

28 29.273.5 28.971.8 26.572.4 25.6 72.3 23.572.0

32 27.673.3 27.771.9 25.771.9 24.771.8 22.571.7

36 25.870.2 27.471.8 25.972.0 24.371.9 22.671.6

40 24.572.7 26.871.9 25.571.9 23.771.7 22.171.5

Avg. 33.1 30.8 28.3 27.1 25.1
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Fig. 3. The classification performance of the four topic models v
entity-representing categories: student, faculty, course, project,
which has more balanced categories of data samples and contains
1039 documents in total. Note here we are only interested in how
much we can obtain from textual content of documents and no
link structure is considered. In both tasks, we first apply the topic
models for dimensionality reduction on the original word fea-
tures. Then support vector machine (SVM) trained on the result-
ing low-dimensional features is used for page classification. SVM
trained on the original word features is served as the baseline.

Tables 6 and 7 show the classification results for the two tasks,
respectively. Given a value of training size per university or
category, we randomly select the training data and this process
is repeated 50 times. The average performance with standard
deviations is recorded. As we can see, all the topic modeling
methods, i.e., PLSA, LDA, LTM, and LDTM, achieve better perfor-
mance than using the word features when the numbers of
training samples are small. Among the four compared topic
modeling approaches, LDTM is obviously the best. Especially,
LDTM yields substantial and consistent improvements of perfor-
mance over pure generative topic modeling approaches (i.e., PLSA
and LDA), which shows the effectiveness of our discriminative
learning scheme.

A key problem for all the topic modeling approaches is how to
estimate the number of hidden topics. Fig. 3 shows how the
performance of the four topic models varies with different
numbers of topics. In task (i), the performance of all the topic
models increases as the number of topics increases. In task (ii),
LDTM, LTM and LDA are less sensitive to the topic number in
comparison to PLSA. The performance of PLSA degrades with
larger numbers of topics, which may suggest the overfitting issue
of PLSA [11].
5. Conclusions and future work

We have introduced a novel probabilistic topic modeling
approach for semantic analysis of documents, called locally
discriminative topic model (LDTM), which takes into account
both generative and discriminative structures. Specifically, LDTM
uses local learning to explore the intrinsic geometric structure in
the data. As a result, LDTM can provide more discriminating
power than traditional topic modeling approaches, e.g., PLSA and
LDA. Comparing to LTM [13], LDTM automatically learns a locally
discriminative regularizer which avoids hand-crafting weight
setting. Experimental results on TREC AP, WebKB, Yahoo! K-series
and 20 Newsgroups data sets have demonstrated that our algo-
rithm can better capture the hidden topics of the documents and
therefore enhance the learning performance.
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s. number of topics: (a) task (i) and (b) task (ii) on WebKB.



For our approach, constructing the document neighborhood is
not limited to exploring the intrinsic word features of documents.
For example, we can use alternatives such as authorship, citation
and hyperlink information of documents, which is common in
real-world data and attracts much renewed interests in recent
years [40,5,8,9]. We will investigate this in the future work.
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