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ABSTRACT
Semi-supervised clustering leverages side information such
as pairwise constraints to guide clustering procedures. De-
spite promising progress, existing semi-supervised clustering
approaches overlook the condition of side information be-
ing generated sequentially, which is a natural setting arising
in numerous real-world applications such as social network
and e-commerce system analysis. Given emerged new con-
straints, classical semi-supervised clustering algorithms need
to re-optimize their objectives over all data samples and con-
straints in availability, which prevents them from efficient-
ly updating the obtained data partitions. To address this
challenge, we propose an efficient dynamic semi-supervised
clustering framework that casts the clustering problem into
a search problem over a feasible convex set, i.e., a convex
hull with its extreme points being an ensemble of m data
partitions. According to the principle of ensemble cluster-
ing, the optimal partition lies in the convex hull, and can
thus be uniquely represented by an m-dimensional proba-
bility simplex vector. As such, the dynamic semi-supervised
clustering problem is simplified to the problem of updating
a probability simplex vector subject to the newly received
pairwise constraints. We then develop a computationally ef-
ficient updating procedure to update the probability simplex
vector in O(m2) time, irrespective of the data size n. Our
empirical studies on several real-world benchmark datasets
show that the proposed algorithm outperforms the state-
of-the-art semi-supervised clustering algorithms with visible
performance gain and significantly reduced running time.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; I.5.3 [Pattern
Recognition]: [Clustering]
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1. INTRODUCTION
Although data clustering has been successfully applied to

plenty of domains [27, 5, 10, 42, 37], it remains as an ill-
posed problem due to its unsupervised nature [31]. Semi-
supervised clustering [2] could address this limitation by ef-
fectively exploring available supervision to guide the cluster-
ing process. Such supervision, also known as side informa-
tion, is often expressed in the form of pairwise constraints,
i.e., must-links between the data pairs that belong to the
same cluster and cannot-links between the data pairs that
belong to different clusters. The key idea of semi-supervised
clustering algorithms is to find the optimal data partition
which is consistent with both the given pairwise constraints
and inherent feature representation of data objects to be
clustered.

Despite the promising progress, one issue often overlooked
by existing semi-supervised clustering approaches is how to
efficiently update the clustering results when the pairwise
constraints are dynamic, i.e., the new pairwise constraints
are generated sequentially. This condition stands natural
and is closely related to many real-world applications. For
example, one representative application in social network
analysis is to identify user communities based on users’ pro-
files as well as their social connections. If we respectively
treat user profiles and connections as features and pairwise
constraints, this application is essentially a semi-supervised
clustering problem. Since new connections are being formed
over time, user communities should also be frequently up-
dated. Similar situations also occur in various real-world e-
commerce platforms, which typically require to group items
or customers based on their profiles (i.e., features) and dy-
namic co-purchasing histories (i.e., pairwise constraints).

We notice that although the subject of evolving clustering
has been intensively studied, to the best of our knowledge,
no previous study has focused on the problem of efficiently
updating semi-supervised clustering results given sequential
constraints. To tackle this challenging problem, in this paper
we propose an efficient dynamic semi-supervised clustering
framework for large-scale data mining applications [48, 22,
40, 41]. The key idea is to cast the semi-supervised cluster-
ing problem into a search problem over a convex hull. More
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specifically, the proposed framework consists of two com-
ponents: (i) an offline step for constructing a convex hull,
and (ii) an online step for efficiently updating the clustering
results when the new pairwise constraints come in. In the
first step, we employ the ensemble clustering technique [51]
to generate m ensemble partitions of n input data points to
be clustered. According to the principle of ensemble cluster-
ing [51, 54, 25], the optimal data partition can be approxi-
mated by a convex combination of the ensemble partitions.
Since all the convex combinations of m ensemble partitions
form a convex hull with m extreme points, the optimal data
partition should lie in the inner space spanned by this convex
hull. This observation relaxes the data clustering problem
to a novel problem of learning m combination weights, or e-
quivalently, anm-dimensional probability simplex vector 1.
Since m is usually significantly smaller than the number of
data points n, it enables us to efficiently update the data
partitions through updating the m-dimensional probability
simplex vector . In the second step of the framework, we
design an efficient updating scheme that is able to update 
in a time complexity of O(m2), which does not depend on
the number of the data points to be clustered.

Compared with the existing approaches engaged in semi-
supervised clustering, our proposed approach owns the fol-
lowing advantages:

1. By applying the ensemble clustering technique, our ap-
proach is able to exploit the strengths of different en-
semble partitions and meanwhile compensate for their
limitations. This can help us to achieve more robust
clustering results.

2. By simplifying the problem of clustering n data points
to the novel problem of learning an m-dimensional
vector , our approach enjoys a low time complexi-
ty, which is independent of the total number of data
points, in updating . This allows for updating large-
scale clustering results in an extremely efficient way.

To evaluate the performance of the proposed dynamic
semi-supervised clustering approach, we conduct empirical
studies on several real-world benchmark datasets. The ex-
perimental results show that the proposed approach surpass-
es the competing approaches in both accuracy and efficiency.

2. RELATED WORK
In this section, we divide the related work into three cate-

gories, namely semi-supervised clustering, clustering accord-
ing to user’s feedback, and dynamic network clustering.

Most semi-supervised clustering methods can be catego-
rized into two main groups [6]: constrained clustering meth-
ods and distance metric learning based methods. The con-
strained clustering methods employ side information to con-
fine the solution space, and only seek feasible data parti-
tions consistent with given constraints. Among them, hard
constraints based methods only consider the cluster assign-
ments such that all the constraints are strictly satisfied.
For instance, Wagstaff et al. [57] modified the K-means
clustering and self-organizing map algorithms to adjust the
cluster memberships towards the given pairwise constraints.
In [50], a generalized Expectation Maximization (EM) algo-
rithm was applied to ensure that only the mixture models

1A probability simplex vector is a vector whose elements are
non-negative and sum up to 1.

matching all the constraints are considered. The hard con-
straints based methods tend to be more sensitive to noise
since some constraints may make the corresponding cluster-
ing problems infeasible [18]. To overcome this issue, a lot of



distance metrics is computationally expensive, especially in
high dimensions. The main focus of evolutionary cluster-
ing [11, 13] is to learn a clustering that fits the current data
well and does not shift dramatically from the historical data.
Chakrabarti et el. [11] developed the evolutionary versions
of both the K-means and agglomerative hierarchical clus-
tering algorithms. Chi et el. [13] then extended this idea to
develop the evolutionary spectral clustering algorithm. Be-
sides, dynamic network clustering [11, 13, 52, 39, 33] was
suggested to solve the community evolution problem when
a network to be clustered changes continuously. In [52], a
parameter-free algorithm called GraphScope was proposed
to mine time-evolving graphs obeying the principle of Min-
imum Description Length (MDL). FacetNet [39] employed
probabilistic community membership models to identify dy-
namic communities within a time-evolving graph. Kim and
Han [33] further allowed a varying number of communities
and presented a particle-and-density based algorithm to dis-
cover new communities or dissolve existing communities. Al-
beit looking similar, dynamic network clustering is different
from the focus of this paper due to the following reasons:
(i) dynamic network clustering algorithms only use links to
guide clustering but ignore the important feature informa-
tion; (ii) they rely on a large amount of link information
to conduct clustering, while our studied dynamic clustering
only requires a small number of pairwise constraints. Due to
the flexibility of handling both data features and dynamic
relationships, our proposed semi-supervised clustering ap-
proach better fits conventional clustering applications.

3. SEMI-SUPERVISED CLUSTERING WITH
SEQUENTIAL CONSTRAINTS

In this section, we first present a general framework for
semi-supervised clustering, followed by the proposed efficient
algorithm for dynamic semi-supervised clustering.

3.1 Semi-Supervised Clustering
Let X = (x1; : : : ;xn) be a set of n data points to be clus-

tered, where each data point xi 2 Rd; i 2 [n] is a vector of d
dimensions. LetMt be the set of must-link constraints gen-
erated until time t, where each must-link pair (xi;xj) 2Mt

implies that xi and xj should be in the same cluster. Sim-
ilarly, let Ct be the set of cannot-link constraints generated
until time t, where each cannot-link pair (xi;xj) 2 Ct im-
plies that xi and xj should belong to different clusters. For
ease of presentation, we also define Ωt =Mt [Ct to include
all pairwise constraints generated until time t. Similar to
most studies on data clustering, we assume that the number
of clusters r is given a priori. Throughout this paper, we
use a binary matrix F 2 f0; 1gn�r to represent the result
of partitioning n data points into r clusters, where Fij = 1
indicates that xi is associated with the j-th cluster. We
further denote F as the set of all possible clustering results

F = fF 2 f0; 1gn�r: F>�;iF�;j = 0 8i 6= j;
X

Fk;� = 1 8kg;

where Fk;� and F�;i indicate the k-th row vector and i-th
column vector of matrix F , respectively. Let �(x;x0) be a
kernel function used to measure the similarity between two
data points x and x0, and let K = [�(xi;xj)] 2 Rn�n+ be
the kernel matrix. The goal of semi-supervised learning is
to find the clustering result that is consistent with both the
kernel similarities in K and pairwise constraints in Ωt. To

measure the discrepancy between the kernel similarity K
and a clustering result F , we define the distance between K
and F as

d(K;F ) =

nX
i=1

F>i;�K
�1Fi;� = tr

�
F>K�1F

�
: (1)

As indicated by the above measure, the smaller the distance
d(K;F ), the better the consistency between the clustering
result F and the similarity matrix K. We note that an al-
ternative approach is to measure the distance by tr(F>LF ),
where L = diag(K1)�K is the graph Laplacian [56].

To measure the inconsistency between the clustering re-
sult F and pairwise constraints, we introduce two loss func-
tions, one for must-links and the other for cannot-links.
More specifically, given a must-link (xi;xj) 2Mt, we define
the loss function ‘�(Fi;�; Fj;�) as

‘�(Fi;�; Fj;�) = kFi;� � Fj;�k22: (2)

Likewise, given a ca_7 5.9(st)1(-l)1(in)1(k)- 5.9749 -/T1_7 66 Td-/T1_.399Ω145.794 0 TdΩ(x)TjΩ/T1_7 5.978 TfΩ5.6 -0.996 TdΩ(i)TjΩ/T1_2 8.9661TfΩ3.162 0.996 TdΩ(;)TjΩ/T1_5 8.966 TfΩ4.096 0 TdΩ(x)TjΩ/T1_7 5.96TfΩ5.599 -0.996 TdΩ(j)TjΩ/T1_0 8.966 TfΩ3.903 0.996 TdΩ())TjΩ/T1_4 8.9663TfΩ6.144 0 TdΩ[C2 Mt



which is computationally expensive when the number of da-
ta points n is very large. To address this challenging issue,
we propose an efficient dynamic semi-supervised clustering
algorithm that is highly efficient for clustering large-scale
data sets.

3.2 Dynamic Semi-Supervised Clustering
The proposed algorithm is based on a key observation that

the number of different clustering results F in the set ∆ =
fF 2 F : d(K;F ) � "g is not very large when " is relatively
small and the eigenvalues of K follow a skewed distribution.

To see this, we denote by �1; : : : ; �n the eigenvalues of K
ranked in descending orders, and v1; : : : ;vn the correspond-
ing eigenvectors. f�kg follows a q-power law if there exists
a constant c such that �k � ck�q, where q > 2. The follow-
ing lemma summarizes an important property of K when its
eigenvalues follow a q-power law.

Lemma 1. Define V = (v1; : : : ;vn) and � = V >x for a
unit vector kxk2 = 1. If x>K�1x � ", we have

k�k1
k�k2

�
p
"n

�
1 +

2

q � 2

�
;

given that the eigenvalues of K follow a q-power law.

The above lemma shows that when the eigenvalues of K fol-
low a power law, V >x is an ‘1 sparse vector if x>K�1x � ".
This observation provides a key foundation for our analysis.

Define �n(�; r) to be the maximum number of partitions
in ∆ for r-way clustering such that the difference between
any two partitions is at least �. The theorem below bounds
�n(�; r).

Theorem 1.

�n(�; r) �
�

2n

(r � 1)s

�Cs(r�1)=(2�)

where C is an universal constant and

s =
p
"n

�
1 +

2

q � 2

�
The proof of Lemma 1 and Theorem 1 are deferred to the
Appendix.

Remark: Theorem 2 implies that when � is large enough,

�n(�; r) is upper bounded by O(nO(r
p
")), which could be sig-

nificantly less than the number of possible r-way clustering
partitions rn.

Based on the above results, there is a relatively smal-
l number of significantly different clustering results in the
subspace ∆. Hence, to improve the computational efficien-
cy of dynamic semi-supervised clustering, a natural thought
is to pre-compute all the possible clustering results in ∆,
and find the best clustering result in ∆ that is consistent
with most of the dynamically updated pairwise constraints.
However, since the number of different clustering results in
∆ is still large, it is computationally intractable to identify
all of them.

To address this problem, we propose to construct a convex

hull e∆ � F to approximate the set ∆. The key advantage of
using a convex hull approximation is that all the solution-

s in e∆ can be represented by convex combinations of e∆’s

extreme points2. Thus, in order to find the best cluster-
ing result, we only need to compute the best combination

weights of e∆’s extreme points. Since the number of combi-
nation weights to be determined is much smaller than the
number of data points to be clustered, this enables us to
compute combination weights in an extremely efficient way.

Specifically, the proposed clustering process is composed
of two steps: an offline and an online step. In the offline
step, we generate multiple partitions of the same dataset X
and use such partitions to construct a convex hull e∆. In the
online step, an efficient learning algorithm is developed to
update the combination weights based on the newly received
pairwise constraints. Below, we describe the two steps in
detail.

3.2.1 Offline Step
In this step, we generate the convex hull e∆ using the tech-

nique of ensemble clustering [51]. The main idea behind
ensemble clustering is to combine multiple partitions of a
same dataset into a single data partition, hoping to exploit
the strength of different clustering results, and compensate
for their limitations.

According to [26], multiple partitions of a same dataset
can be generated by (i) applying different clustering algo-
rithms [24], (ii) using the same algorithm with different ini-
tializations and parameters [53, 23], (iii) employing different
pre-processing and feature extraction mechanisms [9], and
(iv) exploring different subsets of features [24, 21]. In or-
der to efficiently generate ensemble partitions for large-scale
data sets, we employee the last approach by first random-
ly selecting m (m � n) different subsets of features in X ,
followed by applying the approximate kernel K-means algo-
rithm [14] to each feature subset. Since the cluster labels
of such ensemble partitions can be arbitrary, we then ap-
ply the Hungarian algorithm [34] to realign their labels. We
denote by P = fP1; P2; : : : ; Pmg the m realigned ensemble
partitions, where each partition Pi 2 F ; i 2 [m] divides X
into r disjoint subsets.

The following proposition shows that the ensemble par-
titions P1; : : : ; Pm are the m extreme points of the convex
hull convfP1; : : : ; Pmg.

Proposition 2. The convex hulle∆ = convfP1; : : : ; Pmg

= f1P1 + � � �+ mPm :

mX
i=1

i = 1 and i � 0; i 2 [m]g

has m extreme points, with each of them being equal to Pi; i 2
[m].

Proposition 2 shows that the data partitions Pi; i 2 [m];
are not interior points of any line segments lying entirely

in the convex hull e∆. Hence, all the solutions in e∆ can
be represented by convex combinations of the m ensemble
partitions in the set P.

We claim that the convex hull e∆ is a good approximation
of the set ∆ = fF 2 F : d(K;F ) � "g, due to the following
two reasons:

2An extreme point of a convex set S, is a point x 2 S, with
the property that if x = �y + (1 � �)z with y; z 2 S and
� 2 [0; 1], then y = x or z = x.
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1. The ensemble partitions are generated by exploring a
kernel k-means algorithm, which is known to be closely
related to spectral clustering [20]. Note that the clus-
tering results in ∆ are agreeable to all the d features of
data points, they should also agree with any subsets of
data features. Therefore, all the ensemble partitions
should satisfy the condition

d(K;Pi) � �; 8i 2 [m];

where � is a constant that is larger than ". This implies

that ∆ and e∆ should have a large overlap.

2. According to the widely applied median partition based
ensemble clustering [51, 54, 25], the optimal data par-
tition P � should have low divergence from all the parti-
tions in the clustering ensemble. Since all the ensemble

partitions are the extreme points of the convex hull e∆,

P � should lie in the inner space spanned by e∆ and it
can be uniquely represented by a convex combination
of ensemble partitions.

By exploiting the convex hull as a search space, we are
able to cast the problem of clustering n data points into
the problem of learning a m-dimensional probability simplex
vector . In more detail, other than directly computing the
best F , we solve the following convex optimization problem
to find the optimal 

min
γ2Rm

+

X
(xi;xj)2Mt

‘+(Fi;�; Fj;�) +
X

(xi;xj)2Ct

‘�(Fi;�; Fj;�)

s.t. >1 = 1; F =

mX
i=1

iPi (5)

Since m is a small number that is much less than the data
size n



Note that rf(q) has a closed-form solution as

rf(q) = 2 [
X

(xi;xj)2Mb
t

q U (ij)U (ij)> +
X

(xi;xj)2Cbt

q V (ij)V (ij)>

+ � (q � t�1)]; (9)

where U (ij) and V (ij) are two m� r matrices, satisfying

U (ij)(k; :) = Pk(i; :)� Pk(j; :)

and

V (ij)(k; :) = Pk(i; :) + Pk(j; :):

Then the probability simplex can be updated via

P∆̃ f q [Im � 2� (
X

(xi;xj)2Mb
t

U (ij)U (ij)>+
X

(xi;xj)2Cbt

V (ij)V (ij)>)]

�2�� (q � t�1)g; (10)

where Im is the m�m identity matrix. Since the matrices
U (ij)U (ij)> and V (ij)V (ij)> can be precomputed offline, we
can efficiently update  using equation (10).

Space-E�cient Relaxation: Despite low time complexi-
ty, the updating scheme (10) suffers from a large space com-

plexity to store all the matrices U (ij)U (ij)> and V (ij)V (ij)>.
We now discuss how to reduce the storage cost by relaxing
the optimization procedure.

Note that the k-th row of the matrix U (ij) should be ei-
ther of these two cases: (i) containing all zero entries if the
ensemble partition Pk put object i and object j in the same
cluster, or (ii) containing one positive entry (= 1) , and one
negative entry (= �1) if the ensemble partition Pk put ob-
ject i and object j in different clusters. Then the diagonal
elements of the matrix U (ij)U (ij)> either equal 0 or equal a
positive value (= 2). Thus the matrix

Im � 2�
X

(xi;xj)2Mb
t

U (ij)U (ij)>

essentially assigns less weight to the ensemble partitions that
mistakenly put the object i and object j in different clus-
ters when they share a must-link connection. Likewise, the
matrix

Im � 2�
X

(xi;xj)2Cbt

V (ij)V (ij)>

essentially assigns less weight to the ensemble partitions that
mistakenly put the object i and object j in the same cluster
when they share a cannot-link constraint. After updating
q+1 from q, the ensemble partitions that are consistent
with the new pairwise constraints are assigned larger weight-
s, while the ensemble partitions that are not consistent with
the new pairwise constraints are assigned smaller weights.
This leads to a relaxed updating procedure4

P∆̃ f(1� 2��) q + 2�� t�1 � C�
X

(xi;xj)2 fMb
t[C

b
tg

e(ij)g; (11)

where e(ij) is an m-dimensional vector with the k-th ele-
ment equaling 0 if the ensemble partition Pk is consistent

4We note that U (ij)U (ij)> and V (ij)V (ij)> may not be diag-
onal matrices. Thus the relaxation that only considers their
diagonal elements can lead to information loss, a problem
that will be investigated in our future work.

with the pairwise constraints (xi;xj), and 1 otherwise. The
parameter C > 0 is introduced to ensure that the third term
in (11) is comparable with the first two terms.

Given the learned probability simplex , we can generate a
soft labeling matrix as a linear combination of the ensemble
partitions

P = 1P1 + 2P2 + : : :+ mPm:

Then the hard partition can be easily obtained by applying
the efficient K-means clustering algorithm [8] to P or round-
ing, i.e., assigning the i-th data point to the k-th cluster if
Pik is the largest entry in the i-th row of P .

The time complexity to update the probability simplex
vector is O(pm2), where p is the number of pairwise con-
straints added at time t. Given the updated t, the time
complexity to generate a hard partition is O(mnr). Since
generally speaking, both m and r are much smaller than
n, the total time complexity of the proposed algorithm is
O(n), which cannot be further improved since all n data
points must be go through at least once for assignment.

4. EXPERIMENTS
In this section, we empirically demonstrate that our pro-

posed semi-supervised clustering algorithm is both efficient
and effective.

4.1 Datasets
Four real-world benchmark datasets with varied sizes are

used in our experiments, which are:

� COIL20 [46], a dataset containing 20 objects with
1; 440 images in total. Each image is represented by a
1024-dimensional vector.

� USPS [30], a widely used handwritten digits dataset
including 9; 298 handwritten images. Each image is
represented by a 256-dimensional vector that belongs
to one of 10 classes.

� Covtype5, a dataset used to predict forest cover types
using cartographic variables. This dataset consists of
581; 012 records belonging to seven cover type classes,
i.e., spruce/fir, lodgepole pine, ponderosa pine, cot-
tonwood/willow, aspen, douglas-fir, and krummholz.

� MNIST8m [43], a dataset artificially enlarged from
the MNIST handwritten digits dataset6. It contains a
total of 8; 100; 000 samples that belong to 10 classes.

4.2 Parameter Selection
In order to generate m ensemble partitions, we need to

randomly sample d̃ out of d features in each time. Two
criteria are adopted in determining the value of d̃. First, d̃
should be small enough to make ensemble partitions diverse.
Second, d̃ should be reasonably large to generate reliable
ensemble partitions since the quality of the starting point
0 depends on the quality of the ensemble partitions. In
our experiments, we set d̃ = dd=20e.

In addition, as a key factor which affects the performance
of the proposed clustering algorithm, the number of ensem-
ble partitions m introduces a trade-off between the clus-

5https://archive.ics.uci.edu/ml/datasets/Covertype
6http://yann.lecun.com/exdb/mnist/
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tering quality and efficiency. As m increases, the cluster-
ing quality tends to improve at the cost of increased com-
puting time. In the following, we analyze how the clus-
tering performance will be influenced by m. To this end,
we conduct the experiments on the two largest datasets,
Covtype and MNIST8m. On both of the two datasets, we
begin with the unsupervised data partition 0 generated
from m = f50; 100; 150; 200; 250; 300g different ensem-
ble partitions. Then we randomly generate 500 pairwise
constraints based on the ground truth categorizations. For
each m, we apply the proposed algorithm to update the data
partition and use normalized mutual information (NMI for
brevity) [16] to measure the coherence between the updated
clustering result and the ground truth categorizations. This
experiment is repeated ten times, and the clustering perfor-
mance NMI, computed as the average over the ten trials, is
plotted in Figure 1.

As expected, the clustering performance NMI keeps in-
creasing when m becomes larger. The performance gain is
due to the fact that a larger m indicates not only a larger
search space but also a larger overlap between ∆ and the
convex hull ∆̃. In addition, a larger number of ensemble
partitions usually provide a more diverse clustering result,
leading to a higher chance of finding the data partitions
that are consistent with most or even all of the pairwise
constraints. We also notice that the clustering performance
NMI of the proposed algorithm gradually stabilizes as m in-
creases to 300. This is not surprising, since when the number
of ensemble partitions is already large enough, adding more
partitions cannot provide more information because the new
partitions are likely to coincide with some existing ensemble
partitions. Such observations hence offer the guidance to
appropriately choose m: on one hand, m should be reason-
ably large to provide a diverse and sufficiently large search
space; on the other hand, m should be relatively small to
reduce the computational cost. We set m = 300 throughout
all the remaining experiments.

4.3 Experimental Results
To examine the effectiveness and efficiency of the pro-

posed semi-supervised clustering algorithm, we compare it a-
gainst the following distance metric learning and constrained
clustering algorithms: (a) PGDM, the probabilistic glob-
al distance metric learning algorithm [60], (b) LMNN, the
large margin nearest-neighbor classifier [59], (c) ITML, the
information-theoretic metric learning algorithm [19], (d) R-
CA, the relevant component analysis based metric learning
algorithm [1], (e) DCA, the discriminative component anal-
ysis based metric learning algorithm [29], (f) CCSKL, the
constrained clustering algorithm via spectral kernel learn-
ing [38], and (g) PMMC, the pairwise constrained maxi-
mum margin clustering algorithm [62]. We refer to the pro-
posed clustering algorithm as Semi-supervised Clustering
with Sequential Constraints, or the abbreviation SCSC.

In our experiments, we begin with u randomly generat-
ed pairwise constraints, denoted by the tier t1. In each of
the following tiers, another set of u randomly sampled pair-
wise constraints are generated, and all the compared semi-
supervised clustering algorithms are called to update their
data partitions based on the newly generated pairwise con-
straints. Specifically, we rerun all the compared algorithms
by adding the new pairwise constraints into the old ones.
We repeat such steps from tier t1 to tier t5, finally result-

(a) Covtype dataset

(b) MNIST8m dataset

Figure 1: The clustering performance normalized
mutual information (NMI) vs. the number of en-
semble partitions m = f50; 100; 150; 200; 250; 300g.

ing in a total of 5u randomly sampled pairwise constraints.
Since the MNIST8m and Covtype datasets are much larger
than the COIL20 and USPS datsets, we set u = 500 for the
former two datasets, and u = 100 for the latter two datsets.
All the experiments are performed on a Linux machine with
Intel Xeon 2:4 GHz processor and 64 GB of main memory.
Each experiment is repeated ten times, and the average clus-
tering performance NMI and the average running time are
reported. We mark the running time as N/A if an algorithm
cannot converge to yield meaningful data partitions within
2 hours.

Figure 2 displays the curves of the clustering performance
for all the referred semi-supervised clustering algorithms,
where we exclude the four baseline algorithms (PGDM,
LMNN, CCSKL, and PMMC) on the two large dataset-
s, i.e., MNIST8m and Covtype, since the data partition-
s cannot be updated by such algorithms within 2 hours.
In comparison to the other competing algorithms, the pro-
posed dynamic semi-supervised clustering algorithm SCSC
accomplishes the best performance on all the four datasets.
It is important that the proposed SCSC algorithm outper-
forms all the competing algorithms from the very beginning,
i.e., when only a small number of pairwise constraints are
given. The reason is that by generating a convex hull from
a set of ensemble partitions, we actually reduce the possi-
ble search space dramatically and all the inner points in that
convex hull can map to reasonably good data partitions. Al-
so, since the starting point 0 is produced by incorporating
the strengths of multiple ensemble partitions, 0 should al-
ready be close to the optimal solution. Therefore, a simple
local search should be good enough to recover the optimal
partition. On the negative side, the variance of the pro-
posed SCSC algorithm is relatively large, especially com-
paring with some distance metric learning algorithms such
as RCA, DCA and ITML. We conjecture that the large
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(a) COIL20 dataset (b) USPS dataset

(c) Covtype dataset (d) MNIST8m dataset

Figure 2: Average clustering performance NMI achieved by the proposed dynamic semi-supervised clustering
algorithm SCSC and the competing algorithms including PGDM [60], LMNN [59], ITML [19], RCA [1],
DCA [29], CCSKL [38], and PMMC [62] from tier t1 to t5 on four datasets.

Table 1: Average running time (in seconds) for updating the data partitions in each tier. N/A means that
the clustering task cannot be completed by the corresponding algorithm within 2 hours.

Running Time (sec) SCSC PGDM LMNN ITML RCA DCA CCSKL PMMC

COIL20 0.2 74 131 15 0:8 0:4 56 264
USPS 0.5 304 514 20 1:6 0:9 373 791
Covtype 2.3 N/A N/A 232 11 6:7 N/A N/A
MNIST8m 5.2 N/A N/A 4; 727 28 16 N/A N/A

variance may be caused by the randomness in generating
ensemble partitions. In our future work, we will investigate
and endeavor to address the problem of generating less un-
certain ensemble partitions.

Finally, we evaluate the computational efficiency of the
proposed SCSC algorithm. Table 1 shows that the updating
procedure of SCSC is extremely efficient. In particular,
SCSC is able to update the partitioning results of more
than 8 million samples in about 5 seconds.

5. CONCLUSIONS
In this paper, we proposed a dynamic semi-supervised

clustering algorithm which can efficiently update clustering
results given newly received pairwise constraints. The key
idea is to cast the dynamic clustering process into a search
problem over a feasible clustering space that is defined as
a convex hull generated by multiple ensemble partitions.
Since any inner point of the convex hull can be uniquely
represented by a probability simplex vector, the dynamic
semi-supervised clustering problem can be reduced to the
problem of learning a low-dimensional vector. Given a set of
sequentially received pairwise constraints, we devised an up-
dating scheme to update the data partition in an extremely
efficient manner. Our empirical studies conducted on sever-
al real-world datasets confirmed both the effectiveness and
efficiency of the proposed algorithm.
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APPENDIX
A. PROOF OF LEMMA 1
Note that �i and vi, i 2 [n] are the eigenvalues and eigen-
vectors of the kernel matrix K. Since � = V >x, we have

x>K�1x =

NX
i=1

��1
i �2

i � ";

which implies

�k �
p
c"k�q=2; k = 1; : : : ; N:

Thus, we have

k�k1 �
p
c"

NX
k=1

k�q=2 �
p
c"

�
1 +

2

q � 2

�
:

We complete the proof by using the facts kxk2 = 1 and
c � n.

B. PROOF OF THEOREM 1
In order to show that the number of significantly different

partitions in ∆ is small, we first consider a simple case where

the number of classes is 2. In this case, we can simplify the
domain ∆ as

∆2 =
n

v 2 f�1;+1gn : v>K�1v � n"
o
:

We define �n(�) the maximum number of partitions in ∆2

such that the difference between any two partition vectors
v1 and v2 is at least �. The theorem below bounds �n(�).

Theorem 2.

�n(�) �
�

2n

s

�Cs=[2�]
where C is an universal constant and

s =
p
"n

�
1 +

2

q � 2

�
(12)

Proof. We first notice that kvk2 =
p
n. As the first

step, we relax ∆2 into ∆02 as follows

∆02 =
n

x 2 Rn : kxk2 �
p
n; x>K�1x � n"

o
Define n(∆02; �) the maximum number of vectors such that
the distance between any two vectors is at least �. Since the
distance between any two partitions that differs by at least
� entries is at least 2

p
�, we have

�n(�) � n
�
∆02; 2

p
�
�
:

Using the result of Lemma 1 and the covering number the-
orem [47] to bound, we have

n
�
∆02; 2

p
�
�
� exp

�
Cs

2�
log

2n

s

�
=

�
2n

s

�Cs=[2�]
;

where s is defined in (12).

The above result for two-way clustering can be easily ex-
tended into multiple-way clustering.

C. PROOF OF PROPOSITION 2
We prove Proposition 2 by contradiction. Suppose at least

one ensemble partition Pi is not the extreme point of the con-
vex hull ∆̃ = convfP1; : : : ; Pmg, then Pi should be an inner

point of ∆̃. According to the definition of extreme points, it
is evident that all the extreme points of ∆̃ should be feasible
partitions in the set F . We denote them as F1; : : : ; Fl 2 F .
Therefore, Pi can be represented by a convex combination
of F1; : : : ; Fl:

Pi =

lX
j=1

�jFj ;

where � is a l-dimensional probability simplex vector. Since
each row of Pi contains only one 1 and all the other elements
are 0, �j should be equal to 0 for any Fj 6= Pi. Otherwise

Pi cannot be equal to A =
Pl
j=1 �jFj since there must

exist at least one index (a; b) such that Pi(a; b) = 0 while
A(a; b) > 0. Since Pi 6= Fj ; 8j = 1; : : : ; l, we have � = 0l,
which contradicts with the constraint 1>� = 1. This verifies
that Pi is not a convex combination of other extreme points.

Since the number of the extreme points in ∆̃ is at most m
and each partition Pi; i 2 [m]; is not a convex combination
of the remaining m� 1 ensemble partitions, the convex hull
∆̃ has exactly m extreme points with each of them equaling
to Pi; i 2 [m].
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