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A. Proof of Lemma 1

We consider the following general optimization problem

—xTy +vy|x|.. (15)

lIx[[2<1

Before we proceed, we need the following lemma.

Lemma 6. The solution to the optimization problem

1
min o (X = y)* + y[x|
is given by
_[o, iflyl <vy;
P2(y) = { sign(y)(ly| =), otherwise.

where P, (-) is the soft-thresholding operator defined in
(7) (Donoho, 1995).

The proof of Lemma 6 can be found in (Duchi & Singer,
2009). Based on the above lemma, it is easy to verify that

y2
min(x —y)? +ylx| = { 2
v 2 yiyl =%,

if |y| <;

otherwise.
(16)

First, we consider the case ||Y||oo < Y. Then, it is easy to

verify that

0 € argmin —x "y + y||x||;.
X

Since ||0||]2 < 1, 0 is also an optimal solution to (15).

Next, we consider the case ||y|l.o > VY. Fol-
lowing the standard analysis of convex optimiza-
tion (Boyd & Vandenberghe, 2004), the Lagrange dual

function g([) of (15) is given by

g(H)
= m)in —x'y+ Y(Ix|1 + H(”X”g —-1)
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So, the Lagrange dual problem is
P 2
Pl
>0 4|J.

and the optimal dual solution is

1P, )l

M = 9

Following the standard analysis (Boyd & Vandenberghe,
2004, Section 5.5.5), the optimal primal solution is
2
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B. Proof of Lemma 2

We first consider the case sign(x,—';u) =1,ie.,

T u
X —— > Of.
" lul2

Then, we have

—|—u —|—ll

T u
T )
“Tallz = Tl

X
[[ull2

+ (X* — Xk

(10)
=> 6k — ||X* —XkHQ > 0.

Thus,
. T . T u . T
sign(x, u) = sign <x* |u|2) = 1 = sign(x; u).
The case that sign(x; u¥) = —1 can be proved in a similar

way.

C. Proof of Lemma 4

First, we have
x| E[wy;] = E [yix]u] Qg [0(x) )%, uy] 2,

where we use the fact that for a fixed x.., XIui can be
treated as a standard Gaussian random variable.

Consider any vector x | x,. Since x u; and x " u; are two

independent Gaussian random variable, y; is independent
from x " u;. Thus, we have

XTE [u,»y,»] =E [inTui] =0.

Then, it is easy to prove Lemma 4 by contradiction.

D. Proof of Theorem 3

The proof of Theorem 3 is almost identical to that of The-
orem 2. The only difference is that in this case, we have

1
O = o(k—1)/4"

and the total number of calls to the Oracle is upper bounded
by

K
m; +2(K — D)t + 2ﬁ26kmk
k=2

K
=my + 2(K — 1)t +2y/nm, » 230D/
k=2

<2(K — 1)t 4 (3y/n225/4 4 1)m.

E. Proof of Corollary 1

We first consider the case that
m < 2(K — Dt + (5v/n25/2 4+ 1)my,
which implies
m = 0(2%/2/nm,) = 0(2%/2sy/nlogn).

Thus,

1 —0o <Sﬁlogn>.

Ixg41 —X||2 = 9K /2 m

In the case that
m < m; 2%,

we have
m = 0(25m;) = 0(2%slogn),

and thus,

~ 1 slogn
||XK+1—X||2—2K/2—O< m )

F. Proof of Corollary 2

The proof is the same as that for Corollary 1.

G. Multiplicative Chernoff Bound

Theorem 4. Let Xy, Xa,...,X,, be independent bina-
ry random variables with Pr[X, = 1] = p;. Denote
S =Y, X, and p = E[S] = > p;. We have
(Angluin & Valiant, 1979)

2

Pr[S <(1-— )y} <exp <—2p) ,for0< <1,

PS> (14 )u]ﬁexp<—2+

u) , for =>0.

For the second bound, let t = ;—jep, which implies =

t++/t2+8ut
2

. Then, with a probability at least e ¢, we have

2
s < (1 Lt \/;qu 8ut>

1< 2U + 2t.



