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A. Proof of Lemma 1

We consider the following general optimization problem

min
‖x‖2≤1

−x⊤y + γ‖x‖1. (15)

Before we proceed, we need the following lemma.

Lemma 6. The solution to the optimization problem

min
x

1

2
(x − y)2 + γ|x|

is given by

Pγ(y) =

{
0, if |y| ≤ γ;
sign(y)(|y| − γ), otherwise.

where Pγ(·) is the soft-thresholding operator defined in

(7) (Donoho, 1995).

The proof of Lemma 6 can be found in (Duchi & Singer,

2009). Based on the above lemma, it is easy to verify that

min
x

1

2
(x − y)2 + γ|x| =

{
y2

2 , if |y| ≤ γ;

γ|y| − γ2

2 , otherwise.

(16)

First, we consider the case ‖y‖∞ ≤ γ. Then, it is easy to

verify that

0 ∈ argmin
x

−x⊤y + γ‖x‖1.

Since ‖0‖2 ≤ 1, 0 is also an optimal solution to (15).

Next, we consider the case ‖y‖∞ > γ. Fol-

lowing the standard analysis of convex optimiza-

tion (Boyd & Vandenberghe, 2004), the Lagrange dual

function g(µ) of (15) is given by

g(µ)

=min
x

−x⊤y + γ‖x‖1 + µ(‖x‖22 − 1)

=min
x

2µ

(
1

2

∥∥∥∥x− y

2µ

∥∥∥∥
2

2

+
γ

2µ
‖x‖1

)
− ‖y‖22

4µ
− µ

=2µ

(
∑

i

min
xi

1

2

(
xi −

yi
2µ

)2

+
γ

2µ
|xi|
)

− ‖y‖22
4µ

− µ

(16)
= 2µ


 ∑

i:|yi|≤γ

y2
i

8µ2
+

∑

i:|yi|>γ

(
γ|yi|
4µ2

− γ2

8µ2

)


− ‖y‖22
4µ

− µ

=
∑

i:|yi|>γ

(
γ|yi|
2µ

− γ2

4µ
− y2

i

4µ

)
− µ

=−
∑
i:|yi|>γ(|yi| − γ)2

4µ
− µ = −‖Pγ(y)‖22

4µ
− µ.

So, the Lagrange dual problem is

max
µ≥0

−‖Pγ(y)‖22
4µ

− µ

and the optimal dual solution is

µ∗ =
‖Pγ(y)‖2

2
.

Following the standard analysis (Boyd & Vandenberghe,

2004, Section 5.5.5), the optimal primal solution is

x∗ =argmin
x

1

2

∥∥∥∥x− y

2µ∗

∥∥∥∥
2

2

+
γ

2µ∗
‖x‖1

Lemma 6
=

1

‖Pγ(y)‖2
Pγ(y).
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B. Proof of Lemma 2

We first consider the case sign(x⊤
k u) = 1, i.e.,

x⊤
k

u

‖u‖2
> δk.

Then, we have

x⊤
∗

u

‖u‖2
= x⊤

k

u

‖u‖2
+ (x∗ − xk)

⊤ u

‖u‖2

> δk − ‖x∗ − xk‖2
(10)

≥ 0.

Thus,

sign(x⊤
∗ u) = sign

(
x⊤
∗

u

‖u‖2

)
= 1 = sign(x⊤

k u).

The case that sign(x⊤
k u

k
i ) = −1 can be proved in a similar

way.

C. Proof of Lemma 4

First, we have

x⊤
∗ E [uiyi] = E

[
yix

⊤
∗ ui

] (4)
= E

[
θ(x⊤

∗ ui)x
⊤
∗ ui

] (5)
= λ,

where we use the fact that for a fixed x∗, x⊤
∗ ui can be

treated as a standard Gaussian random variable.

Consider any vector x ⊥ x∗. Since x⊤
∗ ui and x⊤ui are two

independent Gaussian random variable, yi is independent

from x⊤ui. Thus, we have

x⊤E [uiyi] = E
[
yix

⊤ui
]
= 0.

Then, it is easy to prove Lemma 4 by contradiction.

D. Proof of Theorem 3

The proof of Theorem 3 is almost identical to that of The-

orem 2. The only difference is that in this case, we have

δk =
1

2(k−1)/4
,

and the total number of calls to the Oracle is upper bounded

by

m1 + 2(K − 1)t + 2
√

n

K∑

k=2

δkmk

=m1 + 2(K − 1)t + 2
√

nm1

K∑

k=2

23(k−1)/4

≤2(K − 1)t + (3
√

n23K/4 + 1)m1.

E. Proof of Corollary 1

We first consider the case that

m ≤ 2(K − 1)t + (5
√

n2K/2 + 1)m1,

which implies

m = O(2K/2
√

nm1) = O(2K/2s
√

n log n).

Thus,

‖xK+1 − x̂‖2 =
1

2K/2
= O

(
s
√

n log n

m

)
.

In the case that

m ≤ m12
K ,

we have

m = O(2Km1) = O(2Ks log n),

and thus,

‖xK+1 − x̂‖2 =
1

2K/2
= O

(√
s log n

m

)
.

F. Proof of Corollary 2

The proof is the same as that for Corollary 1.

G. Multiplicative Chernoff Bound

Theorem 4. Let X1, X2, . . . , Xn be independent bina-

ry random variables with Pr[Xi = 1] = pi. Denote

S =
∑n
i=1 Xi and µ = E[S] =

∑n
i=1 pi. We have

(Angluin & Valiant, 1979)

Pr [S ≤ (1− ǫ)µ] ≤ exp

(
−ǫ2

2
µ

)
, for 0 < ǫ < 1,

Pr [S ≥ (1 + ǫ)µ] ≤ exp

(
− ǫ2

2 + ǫ
µ

)
, for ǫ > 0.

For the second bound, let t = ǫ2

2+ǫµ, which implies ǫ =

t+
√
t2+8µt

2µ . Then, with a probability at least e−t, we have

S ≤
(
1 +

t +
√

t2 + 8µt

2µ

)
µ ≤ 2µ + 2t.


